easykemistry

Monday, 18 November 2024

BALANCING IONIC EQUATIONS at a glance

 

Ionic equations

Ionic equations are equations that show only the oxidized and the reduced species. For example, given the reaction below 

1.       Zn(s) + CuSO4(aq)  ZnSO4(aq) + Cu(s)
                  blue                              colourlesss

          the oxidation number of Zn changes from 0 to +2 (R.A) while the O.N of Cu changes from +2 to 0 (oxidizing agent); but the O.N’s of the other elements (S and O) remains unchanged and so will cancel out.

                 Zn(s) + CuSO4(aq)  ZnSO4(aq) + Cu(s)
                       blue                colourlesss


 Ionic equations show only the oxidized and the reduced specie. So, the ionic equation for the reaction above can be written as

               Zn(s) + Cu2+(aq)    Zn2+(aq) + Cu(s)

2        The reaction between potassium iodide and iron (III) tetraoxosulphate (VI) is another example. It results in the formation of brown a mixture due to the formation of iodine. Here, iodide ions are oxidized to iodine while iron (III) ions are reduced to iron (II) ions.

          Fe2(SO4)3(s) + KI(aq) → FeSO4(aq) + K2SO4(aq) + I2(l)

          The oxidation number of iodine changes from (–1) to 0 due to loss of electrons while the Fe3+ gains electron to become Fe2+. There is no change in the O.N of K

          Ionically, the above equation is written as

          Fe3+(aq)  +  I-(aq) → Fe2+(aq) + I2(l)

 

Half equations

Half-equations are equations shows only the oxidation half or the reduction half equation. Using both reactions discussed above that is,

         Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s)    

             R. A      O.A

                   Zn(s)  Zn2+             Oxidation half

                   Cu2+(aq)  Cu(s)         Reduction half

 

Similarly

            Fe3+(aq)  +  I-(aq) → Fe2+(aq) + I2(l)

 

R.A        O.A  

We have

1     I-(aq)      I2(l)              Oxidation half

2     Fe3+(aq)  Fe2+(aq)         Reduction half

 

Balancing redox equations

 It is important to make sure that the number of electrons lost by the reducing agent equals the number of electrons gained by the oxidizing agent in redox reactions.

There are two main methods that can be used to balance redox equations, they are

1.   The half-equation method and

 2.  The oxidation number method and

1      The half-equation method  

          b)      Balancing redox equation using half-equation methods

                   Rules for balancing redox equation using half-equation method

                   Solution

                   i)       Step I                                             

                            Write down the oxidation number of every atom present

                 ii)      Divide the equation into two half-equations (the oxidation half and the reduction half)

                  iii)       Balance each half-equation thus

                   a)       Balance the atoms other than O and H, then O … finally H

                   b)      Balance the charges by adding electrons to the left side for reduction half-equation (gain) and to the right side for oxidation half-equation (loss).

  iv)      Cross-multiply each half-equation by the electron co-efficient of the other half-equation (to balance electron gain and loss)

  v)       Add the two half-equations to get the net-balanced equation; then include the state of matter.

                   Example: Balance the following ionic equation using half-equation methods

                   i)      Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s) 

                           ii)      Br-(aq)  +  Cl2(g)  →  Cl(aq) +  Br2(l)

 

          Solution

          I        Step I

                   a)      Write out the O.N of every atom present

                                    0       +2               +2               0
                                                           
                   Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s)

                  

                   b)      Divide the equation into 2 half-equations (oxidation-half and the reduction half)

                          Zn(s)    Zn2+             Oxidation half

                         Cu2+(aq)  Cu(s)           Reduction half

 

                   c)      Balance the atoms and then the charges using appropriate coefficients

                     Zn → Zn2+ + 2e   [Add electrons to the product side for oxidation]

                     Cu2+ + 2e → Cu   [ Add electrons to the reactant side for reduction.]

 

                   d)      Cross-multiply the electron coefficient to balance the electron gain or loss.

                            Zn  →  Zn2+  + 2e

                            Cu2+  + 2e  →  Cu

 

                   e)      Add the two half-equations to get the net balanced equation.

                            Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s) 

 

          II       Example 2

                   Write down the O.N of each atom or ion present

                   a)      Br + Cl2  →  Cl  +  Br2

         

                   b)      Divide the equation into two half-equations (oxidation half and the reduction half)

                            Br →  Br2       Oxidation

                            Cl2  +  2e-  →  Cl–   Reduction

 

                         c)      Balance each half equation by suing appropriate number of atoms and number of electrons.

                            Br → Br2 + 2e

                            Cl2 + 2e → 2Cl

 

                   d)      Cross-multiply the electron coefficient to balance the electron gain or loss.

                            2Br  →  Br2  +  2e

                              Cl2  +  2e   →  2Cl

                  

                   e)      Add the 2–half-equation   to get the net balanced equation.

                            2Br-(aq)  +  Cl2(g)  →  2Cl(aq) +  Br2(l)

 

The oxidation number method

          This method involves or follows five steps to balance redox equation. These steps are:

          a)       Assign O.N to all the elements in the reaction

          b)      Identify the oxidized species and the reduced specie from the O.N assigned.

          c)       Deduce the number of electrons lost by the R.A in the oxidation and gained by the O.A in the reduction (use lines to show the changes)

          d)      Multiply these numbers by appropriate factors (numbers) to make the electron lost equal the electron gained using these factors as balancing coefficients.

          e)       Inspect the equation to complete the balancing assigning states be sure it is complete hen add the states of matter.

 

                   b)      ZnS(s)  +  O2(g)    ZnO  +  SO2(g)

 

                   Solution

                   i)       Step I

                            Assign O.N for all the atoms present            

                   +2 -2           0          +2 -2    +4 -2
                                               ↑ ↑
              ZnS(s)  +  O2(g)  
  ZnO  +  SO2(g)

                   ii)      Step II

                            Identify the oxidized specie and the reduced specie

                                 Loses 6 electrons

                            ZnS  +  O2  →  ZnO  +  SO2

                                       Gains 6e

                   ZnS is oxidized; the O.N of S increased from –2 in ZnS to +4 in SO2 (thereby losing 6 electrons) and O.N of O decreased from 0(zero) in O2 to –2 in ZnO and SO2.

 

                    iii)     Step III

                            Deduce the electron gain and electron loss and indicate with connecting lines.

 

                    iv)     Step IV

                            Multiply the electron gain and loss with co-efficient to make them equal. The sulphur atom loses 6 electrons and each O atom in O2 gains 2 electrons, as well as O in ZnO for a total of 6-electrons. If we put the coefficient in front of O2 it will give 3-atoms of O on the right-hand side of the equation; balancing the total number of electron gain and loss.

                            2ZnS + 3O2 → 2ZnO + SO2

 

                   v)      Step V

                            inspect the balancing to see if it is complete. The atoms are balanced but our coefficients must be whole numbers and so we multiply through by 2.

                            2ZnS(s) + 3O2(g) → 2ZnO(s) + 2SO2(g)

                       Check (Zn=2, S = 2, O = 6)         (Zn = 2, S = 2, O = 6)

                                                                 

 

 Example I

          Balance the following redox equations by oxidation number method

          i)       Cu(s) + HNO3 Cu(NO3)2 + 2H2O + O2

          ii)      ZnS(s) + O2(g)  ZnO(s) + SO2(g)

 

          Solution

          a)      Step I

                   Assign oxidation number to all elements in the reaction.

      0               +1+5 –2            +2   + –2             +1 +2         +4 –2
      |             |   |   |           |     |  |         |    |        |   |  
     Cu  +  2 H N O3  
 Cu(NO3)2  +  H2O   +  NO2


 

          b)      Step II

                   Identify the oxidized and the reduced species from the change in the oxidation numbers. That is O.N of Cu increased from 0 to +2, so Cu was oxidized and the O.N of N decreased from +5 (in HNO3) to +4 (in NO2); HNO3 was reduced. 

 3        Step III

          Deduce electron lost and electron gained using connecting lines between the atoms. 2 electrons were lost by Cu in the oxidation and 7 electron was gained by N in the reduction.

                     loss 2e

          Cu + HNO3 Cu(NO3)2 + H2O + NO2

                                        gain 1e 

4        Step IV

          Multiply each equation by electron coefficient to balance electron gain or loss. So we will multiply the electron gain by the N by 2 and then put the coefficient of 2 in front of NO2 and HNO3.

          Cu + 2HNOCu(NO3)2 + H2O + 2NO2

 

5        Step V

          Complete the balancing (process) by inspection:  The N has become 4 on the right-hand side of the equation and so a 4 should be placed in front of HNO3.

          Cu + 4HNO3  Cu(NO3)2(q) + H2O(l) + 2NO2(g)

          We also place a 2 in front of H2O on the right-hand side of the equation to balance the H; and then add the states of matter.

          Cu(s) + 4HNO3  Cu(NO3)2(aq) + 2H2O(l) + 2NO2(g)
       Check        
                  Reactants                    PRODUCT

    [Cu = 1,  N = 4, O = 12, H = 4]                   [Cu = 1, N = 4, O = 12, H = 4]


 

Balancing complex ionic equations

To balance complex ionic equations; we take into consideration the reaction medium; where the reaction is occurring in an acidic medium or in an alkaline medium, and the half-equation method works best

1        To balance complex ionic equation occurring in acidic medium:  The rules are the same as stated earlier for balancing redox reactions but for some few additions which will be made as we solve some exercises.

          2

Tuesday, 5 November 2024

ALKENES at a glance

 ALKENES

Alkenes are a homologous series of unsaturated hydrocarbons with a general molecular formular CnH2n.

They are named by replacing the ending "ane" of the corresponding alkane with "ene" for each member of the series.

NOTE: because alkenes contain double bonds between carbon to carbon i.e C=C n=1 does not exist.

When n=

General Molecular Formulae CnH2

Name

2.

C2H2x2= C2H4

Ethene

3.

C3H2x3 = C3H6

Propene

4.

C4H2x4 = C4H8

Butene

5.

C5H2x5 = C5H10

Pentene

6.

C6H2x6 = C6H12

Hexene

7.

C7H2x7 = C7H14

Heptene

8.

C8H2x8 = C8H16

Octene

9.

C9H2x9 = C9H18

Nonenem

10.

C10H2x10 = C10H20

Decene



 

NOMENCLATURE OF ALKENES

When naming the alkenes, care must be taken because unlike the alkanes which have only single bonds, the alkenes contain double bonds, and so the naming of the substituents are based on the position of the double bond. For example, the molecule CH3CH=CHCH3 is named but-2-ene.

Although the double bond joins carbon atoms 2 and 3, the number 2 is used because it gives the lowest number to the double bond.


(i)  CH3-CH2-CH2-CH=CH2           (ii) CH3CH2CH=CHCH

             Pent-1ene                                             pent-2-ene

                                                                               CH3
                                                                                 |
(iii)       CH3C=CHCH3                     (iv)       CH3-C=C-CH3
                          |                                                            |                                  
                         CH3                                                      CH3

             3-methylbut-2-ene                              2,3-dimethylbut-2-ene

                        

                          CH3                                              CH3           CH3
(v)                      |                                                     |                 |   
           CH3CH2C=CCH2CH3                (vi)   CH3C-CH=CH-C-CH3
                               |                                                 |                  |      
                               CH3                                          CH3           CH3

            3,4-dimethylhex-3-ene                                   2,2,5,5-tetramethylhex-3-ene

MOLECULAR STRUCTURES OF ALKENES

ALKENES

STRUCTURAL FORMULAR

MOLECULAR FORMULAR

2.

C2H4

Ethene


   H                  H
                   ∕  
           C=C
         ∕           
   H                   H           

H2C=CH2

3.

C3H6

Propene

          H    H           H
           |      |         ∕
 H — C — C=C
           |       |       
          H     H           H

CH3CH=CH2



4.

C4H8

Butene

        H H H       H
        |   |   |      ∕
   H-C-C-C=C
        |   |   |       ∖
        H H H        H

CH3CH2CH=CH2

5.

C5H10

Pentene

      H H H  H        H
       |   |   |    |       ∕
  H-C-C-C-C=C
       |   |   |   |       ∖
      H H H H        H

CH3(CH2)2CH=CH2

6.

C6H12

Hexene

      H H H H  H       H
       |   |   |   |    |       ∕
  H-C-C-C-C-C=C
        |   |   |   |   |     ∖
       H H H H H      H

CH3(CH2)3CH=CH2

7.

C7H14

Heptene

      H H H H H H       H
      |   |    |   |   |   |       ∕
 H-C-C-C-C-C-C=C
      |    |   |   |   |   |       ∖
     H H H H H H        H

CH3(CH2)4CH=CH2

8.

C8H16

Octene

      H H H H H H  H     H
       |   |    |   |   |   |   |      ∕
 H-C-C-C-C-C-C-C=C
       |  |    |   |   |   |   |      ∖
      H H H H H H H      H

CH3(CH2)5CH=CH2

9.

C9H18

Nonene

     H H H H H H H  H       H
      |   |   |    |   |   |    |   |       ∕               H-C-C-C-C-C-C-C-C=C
      |   |   |   |    |   |   |   |      ∖
       H H H H H H H H     H

CH3(CH2)6CH=CH2

10.

C10H20

Decene

    H H H H H H H H  H     H
     |  |    |    |    |  |    |   |   |     ∕
H-C-C-C-C-C-C-C-C-C=C
     |   |   |    |   |   |  |   |    |     ∖       
   H H H H H H H H H      H

CH3(CH2)7CH=CH2

LABORATORY PREPARATION OF ETHENE

Ethene is prepared in the laboratory by dehydration, that is, removal of water molecules from alkanols such as ethanol (C2H5OH) by concentrated H2SO4 to form ethylhydrogentetraoxosulphate VI and water as products.


DIAG.






equation for the reaction

step i:      C2H5OH + H2SO4  C2H5HSO4 + H2O.

  step ii.   C2H5HSO4 →C2H4 + H2SO4

When ethylhydrogentetraoxosulphate (VI) is heated, it releases ethene which is collected over water.

 

NOTEThe wash bottle containing sodium hydroxide serves to remove Sulphur (iv)oxide.


PHYSICAL PROPERTIES OF ETHENE (ALKENES)

1. It is colourless and odourless gas

2. It is neutral litmus paper

3. It almost insoluble in water

4. It is less dense than air.

CHEMICAL PROPERTIES OF ETHENE

Alkenes such as ethene undergoes addition reaction (a reaction in which one molecule of a compound is simply added on to the alkenes at the position of the carbon - carbon double bond (C=C) and this is converted to carbon – carbon single bond (C-C) that is, the alkanes. Examples of addition reaction are:

1. Reaction of ethene with hydrogen in the presence of nickel as a catalyst

                                    Ni
                 H2C=CH2 + H2 →   CH3CH3   
                  ethene                          ethane

This reaction is important in the conversion of oil into margarine by the process known as HYDROGENATION.

2. Reaction of ethene with chlorine to produce 1,2-dichloroethane.


            CH2=CH2 + Cl2 → ClCH2-CH2Cl

3. Reaction of ethene with bromine to produce 1,2-dibromoethane

            CH2=CH2 + Br2 → CH2Br-CH2Br

4. Reaction of ethene with oxygen or combustion reaction of ethene (alkenes) to produce carbon(iv)oxide and water

            CH2=CH+ 3O2 →2CO2 + 2H2O

5. Reaction of ethene with hydrogen halide (Hydrogen chloride) (HCl) to produce ethylchloride.

            CH2=CH2 + HCl → CH3CH2Cl  

6. Reaction of ethene with water in the presence of dilute H2SO4 to produce ethanol

            CH2=CH2 + H2O →CH3CH2OH

7. Reaction of ethene with neutral KMnO4 to produce 1,2-ethan-diol (glycol)

            

            CH2=CH2 + KMnO4 → CH2—CH2
                                                        |          |
                                                       OH     OH     1,2-ethan-diol

 KMnO4 is decolorized in the above reaction and this reaction distinguishes alkenes from alkanes which do not decolorize KMnO4

USES OF ETHENE

1. In the production of polythene which is used for making nylon or polythene bags and wrappers

2. In the manufacturing of margarine by the process of hydrogenation.



(i)      CH3CH2C = CCH3                                           (ii)     CH3C = CHCH3
                                |       |                                                              |
                          CHCH3                                                       CH3
             2,3-dimethylpent-2-ene                                  3-methylbut-2-ene


                       CH3                                                                                          CH3 
                        |                                                                                                |    
(iii)       CH2= C — CH—CH2CH2CH=CH2        (iv)        CH3CH2CHCH=CHCH=C
=CH2 
                                |                                                                           |
                                CH2CH3                                                             CH2CH3  
           2-methyl, 3-ethylhept-1,6-diene                                6-ethyl, 3-methyloct-1,2,4-triene


                                                                                    Cl
                                                                                     |
(v)       CH3CH=CHCH3                        (vi)      CH3-C-CH=CH2 
                           |                                                         |
                          Cl                                                      Cl
            3-chlorobut-2-ene                               3,3-dichlorobut-1-ene


(vii)     CH3CH2C=CH=CHCH3              (viii)     CH3C=CHC=CH3  
                           |            |                                              |           |
                          Cl         Br                                           Cl        Cl
            2-bromo, 4-chlorohex-2,3-diene        2,4-dichloropent-1,3-diene

                           

                                 Cl                                                                   Cl
                                  |                                                                       |
(ix)      CH2=C=CH-C=C-CH3                         (x)     CH3CHCH=C-CH3  
                                       |                                                    |             |
                                      Br                                                 Cl         Cl
                5-bromo,3-chlorohex-1,2,4-triene                 4,2,2-trichloropent-2-ene

              

            H H H            H                                                        CH2CH3
               |    |  |            ∕                                                          ∕
(xi)  H-C-C-C-C=C                              (xii)   CH3CH = C
             |    |   |   |      ∖                                                        ∖                                     
            H H   | H        H                                                       CH2CH2Cl
                      |                                                                     5-chloro -3-ethylpent-2-ene
                 H-C-H                                              
                      |
                     H                                                                       
       3-methylpent-1-ene

                       

                                    CH3
(xiii)                          ∕
            H2C = C = C
                                
                                   H
            But-1,2-diene 

OBJECTIVE QUESTIONS

1. Hydrogenation of butene yields 
a. Butyne 
b. butane
c. pentene
d. butanol

2. Geometric (cis- trans) isomerism is exhibited by

a. C2H2Cl2

b. C2H6Cl

c. C4H10

d. C5H12


3. which of the following is the general formular for the alkenes
a. CnH2n-2
b. CnH2n
c. CnH2n+2
d. CnH2n+1

4. Alkenes underg the reactions

THEORY QUESTIONS
1. Use the reaction scheme below to answer the following questions 
(i).