easykemistry

Monday, 18 November 2024

BALANCING IONIC EQUATIONS at a glance

 

Ionic equations

Ionic equations are equations that show only the oxidized and the reduced species. For example, given the reaction below 

1.       Zn(s) + CuSO4(aq)  ZnSO4(aq) + Cu(s)
                  blue                              colourlesss

          the oxidation number of Zn changes from 0 to +2 (R.A) while the O.N of Cu changes from +2 to 0 (oxidizing agent); but the O.N’s of the other elements (S and O) remains unchanged and so will cancel out.

                 Zn(s) + CuSO4(aq)  ZnSO4(aq) + Cu(s)
                       blue                colourlesss


 Ionic equations show only the oxidized and the reduced specie. So, the ionic equation for the reaction above can be written as

               Zn(s) + Cu2+(aq)    Zn2+(aq) + Cu(s)

2        The reaction between potassium iodide and iron (III) tetraoxosulphate (VI) is another example. It results in the formation of brown a mixture due to the formation of iodine. Here, iodide ions are oxidized to iodine while iron (III) ions are reduced to iron (II) ions.

          Fe2(SO4)3(s) + KI(aq) → FeSO4(aq) + K2SO4(aq) + I2(l)

          The oxidation number of iodine changes from (–1) to 0 due to loss of electrons while the Fe3+ gains electron to become Fe2+. There is no change in the O.N of K

          Ionically, the above equation is written as

          Fe3+(aq)  +  I-(aq) → Fe2+(aq) + I2(l)

 

Half equations

Half-equations are equations shows only the oxidation half or the reduction half equation. Using both reactions discussed above that is,

         Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s)    

             R. A      O.A

                   Zn(s)  Zn2+             Oxidation half

                   Cu2+(aq)  Cu(s)         Reduction half

 

Similarly

            Fe3+(aq)  +  I-(aq) → Fe2+(aq) + I2(l)

 

R.A        O.A  

We have

1     I-(aq)      I2(l)              Oxidation half

2     Fe3+(aq)  Fe2+(aq)         Reduction half

 

Balancing redox equations

 It is important to make sure that the number of electrons lost by the reducing agent equals the number of electrons gained by the oxidizing agent in redox reactions.

There are two main methods that can be used to balance redox equations, they are

1.   The half-equation method and

 2.  The oxidation number method and

1      The half-equation method  

          b)      Balancing redox equation using half-equation methods

                   Rules for balancing redox equation using half-equation method

                   Solution

                   i)       Step I                                             

                            Write down the oxidation number of every atom present

                 ii)      Divide the equation into two half-equations (the oxidation half and the reduction half)

                  iii)       Balance each half-equation thus

                   a)       Balance the atoms other than O and H, then O … finally H

                   b)      Balance the charges by adding electrons to the left side for reduction half-equation (gain) and to the right side for oxidation half-equation (loss).

  iv)      Cross-multiply each half-equation by the electron co-efficient of the other half-equation (to balance electron gain and loss)

  v)       Add the two half-equations to get the net-balanced equation; then include the state of matter.

                   Example: Balance the following ionic equation using half-equation methods

                   i)      Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s) 

                           ii)      Br-(aq)  +  Cl2(g)  →  Cl(aq) +  Br2(l)

 

          Solution

          I        Step I

                   a)      Write out the O.N of every atom present

                                    0       +2               +2               0
                                                           
                   Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s)

                  

                   b)      Divide the equation into 2 half-equations (oxidation-half and the reduction half)

                          Zn(s)    Zn2+             Oxidation half

                         Cu2+(aq)  Cu(s)           Reduction half

 

                   c)      Balance the atoms and then the charges using appropriate coefficients

                     Zn → Zn2+ + 2e   [Add electrons to the product side for oxidation]

                     Cu2+ + 2e → Cu   [ Add electrons to the reactant side for reduction.]

 

                   d)      Cross-multiply the electron coefficient to balance the electron gain or loss.

                            Zn  →  Zn2+  + 2e

                            Cu2+  + 2e  →  Cu

 

                   e)      Add the two half-equations to get the net balanced equation.

                            Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s) 

 

          II       Example 2

                   Write down the O.N of each atom or ion present

                   a)      Br + Cl2  →  Cl  +  Br2

         

                   b)      Divide the equation into two half-equations (oxidation half and the reduction half)

                            Br →  Br2       Oxidation

                            Cl2  +  2e-  →  Cl–   Reduction

 

                         c)      Balance each half equation by suing appropriate number of atoms and number of electrons.

                            Br → Br2 + 2e

                            Cl2 + 2e → 2Cl

 

                   d)      Cross-multiply the electron coefficient to balance the electron gain or loss.

                            2Br  →  Br2  +  2e

                              Cl2  +  2e   →  2Cl

                  

                   e)      Add the 2–half-equation   to get the net balanced equation.

                            2Br-(aq)  +  Cl2(g)  →  2Cl(aq) +  Br2(l)

 

The oxidation number method

          This method involves or follows five steps to balance redox equation. These steps are:

          a)       Assign O.N to all the elements in the reaction

          b)      Identify the oxidized species and the reduced specie from the O.N assigned.

          c)       Deduce the number of electrons lost by the R.A in the oxidation and gained by the O.A in the reduction (use lines to show the changes)

          d)      Multiply these numbers by appropriate factors (numbers) to make the electron lost equal the electron gained using these factors as balancing coefficients.

          e)       Inspect the equation to complete the balancing assigning states be sure it is complete hen add the states of matter.

 

                   b)      ZnS(s)  +  O2(g)    ZnO  +  SO2(g)

 

                   Solution

                   i)       Step I

                            Assign O.N for all the atoms present            

                   +2 -2           0          +2 -2    +4 -2
                                               ↑ ↑
              ZnS(s)  +  O2(g)  
  ZnO  +  SO2(g)

                   ii)      Step II

                            Identify the oxidized specie and the reduced specie

                                 Loses 6 electrons

                            ZnS  +  O2  →  ZnO  +  SO2

                                       Gains 6e

                   ZnS is oxidized; the O.N of S increased from –2 in ZnS to +4 in SO2 (thereby losing 6 electrons) and O.N of O decreased from 0(zero) in O2 to –2 in ZnO and SO2.

 

                    iii)     Step III

                            Deduce the electron gain and electron loss and indicate with connecting lines.

 

                    iv)     Step IV

                            Multiply the electron gain and loss with co-efficient to make them equal. The sulphur atom loses 6 electrons and each O atom in O2 gains 2 electrons, as well as O in ZnO for a total of 6-electrons. If we put the coefficient in front of O2 it will give 3-atoms of O on the right-hand side of the equation; balancing the total number of electron gain and loss.

                            2ZnS + 3O2 → 2ZnO + SO2

 

                   v)      Step V

                            inspect the balancing to see if it is complete. The atoms are balanced but our coefficients must be whole numbers and so we multiply through by 2.

                            2ZnS(s) + 3O2(g) → 2ZnO(s) + 2SO2(g)

                       Check (Zn=2, S = 2, O = 6)         (Zn = 2, S = 2, O = 6)

                                                                 

 

 Example I

          Balance the following redox equations by oxidation number method

          i)       Cu(s) + HNO3 Cu(NO3)2 + 2H2O + O2

          ii)      ZnS(s) + O2(g)  ZnO(s) + SO2(g)

 

          Solution

          a)      Step I

                   Assign oxidation number to all elements in the reaction.

      0               +1+5 –2            +2   + –2             +1 +2         +4 –2
      |             |   |   |           |     |  |         |    |        |   |  
     Cu  +  2 H N O3  
 Cu(NO3)2  +  H2O   +  NO2


 

          b)      Step II

                   Identify the oxidized and the reduced species from the change in the oxidation numbers. That is O.N of Cu increased from 0 to +2, so Cu was oxidized and the O.N of N decreased from +5 (in HNO3) to +4 (in NO2); HNO3 was reduced. 

 3        Step III

          Deduce electron lost and electron gained using connecting lines between the atoms. 2 electrons were lost by Cu in the oxidation and 7 electron was gained by N in the reduction.

                     loss 2e

          Cu + HNO3 Cu(NO3)2 + H2O + NO2

                                        gain 1e 

4        Step IV

          Multiply each equation by electron coefficient to balance electron gain or loss. So we will multiply the electron gain by the N by 2 and then put the coefficient of 2 in front of NO2 and HNO3.

          Cu + 2HNOCu(NO3)2 + H2O + 2NO2

 

5        Step V

          Complete the balancing (process) by inspection:  The N has become 4 on the right-hand side of the equation and so a 4 should be placed in front of HNO3.

          Cu + 4HNO3  Cu(NO3)2(q) + H2O(l) + 2NO2(g)

          We also place a 2 in front of H2O on the right-hand side of the equation to balance the H; and then add the states of matter.

          Cu(s) + 4HNO3  Cu(NO3)2(aq) + 2H2O(l) + 2NO2(g)
       Check        
                  Reactants                    PRODUCT

    [Cu = 1,  N = 4, O = 12, H = 4]                   [Cu = 1, N = 4, O = 12, H = 4]


 

Balancing complex ionic equations

To balance complex ionic equations; we take into consideration the reaction medium; where the reaction is occurring in an acidic medium or in an alkaline medium, and the half-equation method works best

1        To balance complex ionic equation occurring in acidic medium:  The rules are the same as stated earlier for balancing redox reactions but for some few additions which will be made as we solve some exercises.

          2

No comments: