easykemistry

Thursday, 4 July 2024

ALKYNES

 

UNSATURATED HYDROCARBON (ALKYNES)

Alkynes are a homologous series of unsaturated hydrocarbons containing triple bond. It has a functional group of (≡) and general molecular formular of CnH2n-2 where n= 1,2,3, ... n for successive members of the group. 

The first member of the alkyne family is ethyne (acetylene).

 Alkynes are named by replacing ending –ane  of the corresponding alkane with –yne.

 

NOTESince alkynes contain triple bonds between C≡C therefore n=1 is not visible.

When n=

General Molecular Formulae  CnH2n-2

Name

2.

C2H2x2-2 = C2H2

Ethyne

3.

C3H2x3-2 = C3H4

Propyne

4.

C4H2x4-2 = C4H6

Butyne

5.

C5H2x5-2 = C5H8

Pentyne

6.

C6H2x6-2 = C6H10

Hexyne

7.

C7H2x7-2 = C7H12

Heptyne

8.

C8H2x8-2 = C8H14

Octyne

9.

C9H2x9-2 = C9H16

Nonyne

10.

C10H2x10-2 = C10H18

Decyne

11.

C11H2x11-2 = C11H20

Undacyne

12.

C12H2x12-2 = C12H22

Dodecyne

13.

C13H2x13-2 = C13H24

Tridecyne

14.

C14H2x14-2 = C14H26

Tetradecyne

15.

C15H2x15-2 = C15H28

Pentadecyne

16.

C16H2x16-2 = C16H30

Hexadecyne

17.

C17H2x17-2 = C17H32

Heptadecyne

18.

C18H2x18-2 = C18H34

Octadecyne

19.

C19H2x19-2 = C19H36

Nonadecyne

20.

C20H2x20-2 = C20H38

Icosyne/Eiocosyne

21.

C21H2x21-2 = C21H40

Heneicosyne

22.

C22H2x22-2 = C22H42

Docosyne

23.

C23H2x23-2 = C23H44

Tricosyne

24.

C24H2x24-2 = C24H46

Tetracosyne

25.

C25H2x25-2 = C25H48

Pentacosyne

26.

C26H2x26-2 = C26H50

Hexacosyne

27.

C27H2x27-2 = C27H52

Heptacosyne

28.

C28H2x28-2 = C28H54

Octacosyne

29.

C29H2x29-2 = C29H56

Nonacosyne

30.

C30H2x30-2 = C30H58

Triacontyne

 

 MOLECULAR STRUCTURES OF ALKYNES

N

ALKYNES

STRUCTURAL FORMULAR

MOLECULAR FORMULAR

2.

C2H2

Ethyne

    

 H-C≡C-H

    

HC≡CH

3.

C3H4

Propyne

                                                                                                          H

 H-C-C≡C-H

      H

CH3C≡CH

4.

C4H6

Butyne

     H H

 H-C-C-C≡C-H

     H H

CH3CH2C≡CH

5.

C5H8

Pentyne

     H H H

 H-C-C-C-C≡C-H

     H H H

CH3(CH2)2C≡CH

6.

C6H10

Hexyne

     H H H H

 H-C-C-C-C-C≡C-H

     H H H H

CH3(CH2)3C≡CH

7.

C7H12

Heptyne

     H H H H H

 H-C-C-C-C-C-C≡C-H

     H H H H H

CH3(CH2)4C≡CH

8.

C8H14

Octyne

     H H H H H H

 H-C-C-C-C-C-C-C≡C-H

      H H H H H H

CH3(CH2)5C≡CH

9.

C9H16

Nonyne

      H H H H H H H

 H-C-C-C-C-C-C-C-C≡C-H

     H H H H H H H  

CH3(CH2)6C≡CH

10.

C10H18

Decyne

      H H H H H H H H

 H-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H

CH3(CH2)7C≡CH

11.

C11H20

Undecyne

      H H H H H H H  H H

 H-C-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H  H

CH3(CH2)8C≡CH

12.

C12H22

Dodecyne

      H H H H H H H H HH

 H-C-C-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H HH

CH3(CH2)9C≡CH

13.

C13H24

Tridecyne

     H H H H H H H H H H H

 H-C-C-C-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H H H H

CH3(CH2)10C≡CH

14.

C14H26

Tetradecyne

      H H H H H H H H H H H H

 H-C-C-C-C-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H H H H H

CH3(CH2)11C≡CH

15.

C15H28

Pentadecyne

      H H H H H H H H H H H H H

 H-C-C-C-C-C-C-C-C-C-C-C-C-C-C≡C-H

      H H HH H H H H H H H H H

CH3(CH2)12C≡CH

16.

C16H30

Hexadecyne

      H H H H H H H H H H H H H H

 H-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H H H H H H H

CH3(CH2)13C≡CH

17.

C17H32

Heptadecyne

      H H H H H H H H H H H H H H H

 H-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H H H H H H H H

CH3(CH2)14C≡CH

18.

C18H34

Octadecyne

     H H H H H H H H H H H H H H H H

 H-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C≡C-H

     H H H H H H H H H H H H H H H H

CH3(CH2)15C≡CH

19.

C19H36

Nonadecyne

      H H H H H H H H H H H H H H H H H

 H-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H H H H H H H H H H

CH3(CH2)16C≡CH

20.

C20H28

Eiocosyne

      H H H H H H H H H H H H H H H H H H

 H-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H H H H H H H H H H H

CH3(CH2)17C≡CH

NOMENCLATURE OF ALKYNES

The nomenclature of alkynes is similar to that of alkenes in many respects as shown in the structures below. The only difference lies on the type of bonds, in alkenes (double bond) and alkynes (triple bond).

 

(i)         CH3-CH2-C≡CCH3                     (ii)        CH3CH2CH2C≡CCH3    

            Pent-2-yne                                           hex-2-yne

            CH3                                                      CH3

(iii)       CHC≡CCH3                               (iv)       CH2-C≡C-CH2

CH3                                                                        CH3

             4-methylpent-2-yne                            hex-3-yne

                   CH3                                                                   CH3       CH3

(v)        CH3CHC≡CCHCH3                                (vi)       CH3C-C≡C-C-CH3

                                CH3                                           CH3      CH3

            2,5-dimethylhex-3-yne                                    2,2,5,5-tetramethylhex-3-yne

                                 CH3

(vii)      CH3CH-C ≡CC-CH2CH3                                 (viii)     CH3C≡CCH2

                   CH3         CH3                                                           CH3

             2,5,5-trimethylhept-3-yne                              pent-2-yne

                      CH3                                                                              CH3 

(ix)       CH≡CC-C=C-------CH—CH2CH2C≡CH               (x)        CH3C-CHC≡CC≡CC≡CH 

                      CH3              CH2CH3                                                    CH2CH3  

            6-ethyl,3,3-dimethyldec-1,6-diyne                 8-ethyl, 8-methynon-1,3,5-triyne

                                                                                              Cl

(xi)       CH3C≡CCHCH3                                    (xii)      CH3-C-C≡CH 

                          Cl                                                                  Cl

            4-chloropent-2-yne                                         3,3-dichlorobut-1-yne

(xiii)     CH3CHC≡CC≡CCHCH3                          (xiv)     CH3CHC≡CCHC≡CH  

                   Cl                Br                                                      Cl         Cl

            2-bromo, 7-chlorooct-3,5-diyne                     3,6-dichlorohept-1,3-diyne

                        H    

                    H-C-H      

             H H H           

(xv)  H-C-C-C-CC≡CH

             H H H        

                   H-C-H

                       H

            3,3-dimethylhex-1-yne

LABORATORY PREPARATION OF ETHYNES (ALKYNES)

Ethyne is prepared in the laboratory by adding cold water into calcium dicarbide (CaC2). Much heat is evolved and sand is placed beneath the flask to protect the flask from breakage. Ethyne is collected over water. The chief impurity, phosphine, PH3 is absorbed by the acidified CuSO4 solution.

EQUATION FOR THE REACTION

CaC2  +  2H2O → Ca(OH)2  +  C2H2.

                                                 Ethyne

 

 

PHYSICAL PROPERTIES OF ETHYNE

1. It is colourless gas

2. It has sweet smell when pure

3. Almost insoluble in water

4. It is neutral to litmus

5. It is strongly exothermic

CHEMICAL PROPERTIES OF ETHYNE

 Alkynes such as ethyne also undergoes addition reaction – a reaction in which one molecule of a compound is simply added on to the alkynes at the position of the carbon – carbon triple bond (C≡C) and this is converted to carbon – carbon single bond (C-C) that is, the alkanes. Examples of addition reaction are:

1.     Reaction of ethyne with hydrogen in the presence of nickel as a catalyst

                            Ni

            CH≡CH + 2H2   →   CH3CH3   

            ethyne                           ethane

2. Reaction of ethyne with bromine to produce 1,1,2,2-tetrabromoethane. The reddish brown colour of bromine is destroyed.

            CH≡CH + 2Br2 → CHBr2-CHBr2

3. Reaction of ethyne with chlorine to produce hydrogen chloride

            CH≡CH + Cl2 → 2C+ 2HCl

4. Reaction of ethyne with oxygen or combustion reaction of ethyne (alkynes) to produce carbon(iv)oxide and water

            2CH≡CH + 5O2  4CO2 + 2H2O

5. Polymerization reaction of ethyne to produce benzene.

            3C2H2 → C6H6 

6. Reaction of ethyne with water in the presence of dilute H2SO4 and mercury as a catalyst to produce ethanal

            CH≡CH + H2O →CH3CHO

7. Reaction of ethyne with KMnO4 to produce 1,2-ethan-diol (glycol)

            CH≡CH  +KMnO4 →CH2-CH2

                                                OH   OH

                                               1,2-ethan-diol

USE OF ETHYNE

1. In oxy-acetylene flame for welding and cutting of metals

2. In oxy-acetylene torch

3. In preparation of acetic acid

4. as a starting material for making polyvinylchloride (PVC) which is used in electrical insulation and water proofing.

TESTS TO DISTINGUISHED BETWEEN ALKANES, ALKENES AND ALKYNES.

The following test can be performed to distinguished clearly the different classes of hydrocarbons, that is, the alkanes, alkenes and alkynes.

All alkanes are saturated compounds while both alkenes and alkynes are unsaturated.

TEST 1: To the suspected hydrocarbons, add an acidified solution of KMnO4 or K2Cr­2O7 solution. Alkanes have no effect in any of these solutions while both alkenes and alkynes decolorized. Acidified KMnO4 solution changes from purple to colourless, while K2Cr2O7 changes from orange to green.

TEST 2To the suspected hydrocarbons, add the solution of Ammonical copper (i) chloride. Alkanes and alkenes have no effect, but alkynes form a yellowish or reddish –brown precipitate.

2NH4OH(aq)+ 2CuCl  + C2H2 → CuC2  + 2NH4Cl  + 2H2O.

TEST: To the suspected hydrocarbon, add solution of Ammonical silver tronitrate (v). Alkanes and alkenes have no effect, but alkynes form a yellowish precipitate.  

2NH4OH + 2AgNO3 + C2H2 2AgC + 2NH4NO3 + 2H2O.

 

2 comments:

Anonymous said...

Wow this is wonderful 😊😊

Anonymous said...

Wow this is wonderful