easykemistry

Monday, 18 November 2024

BALANCING IONIC EQUATIONS at a glance

 

Ionic equations

Ionic equations are equations that show only the oxidized and the reduced species. For example, given the reaction below 

1.       Zn(s) + CuSO4(aq)  ZnSO4(aq) + Cu(s)
                  blue                              colourlesss

          the oxidation number of Zn changes from 0 to +2 (R.A) while the O.N of Cu changes from +2 to 0 (oxidizing agent); but the O.N’s of the other elements (S and O) remains unchanged and so will cancel out.

                 Zn(s) + CuSO4(aq)  ZnSO4(aq) + Cu(s)
                       blue                colourlesss


 Ionic equations show only the oxidized and the reduced specie. So, the ionic equation for the reaction above can be written as

               Zn(s) + Cu2+(aq)    Zn2+(aq) + Cu(s)

2        The reaction between potassium iodide and iron (III) tetraoxosulphate (VI) is another example. It results in the formation of brown a mixture due to the formation of iodine. Here, iodide ions are oxidized to iodine while iron (III) ions are reduced to iron (II) ions.

          Fe2(SO4)3(s) + KI(aq) → FeSO4(aq) + K2SO4(aq) + I2(l)

          The oxidation number of iodine changes from (–1) to 0 due to loss of electrons while the Fe3+ gains electron to become Fe2+. There is no change in the O.N of K

          Ionically, the above equation is written as

          Fe3+(aq)  +  I-(aq) → Fe2+(aq) + I2(l)

 

Half equations

Half-equations are equations shows only the oxidation half or the reduction half equation. Using both reactions discussed above that is,

         Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s)    

             R. A      O.A

                   Zn(s)  Zn2+             Oxidation half

                   Cu2+(aq)  Cu(s)         Reduction half

 

Similarly

            Fe3+(aq)  +  I-(aq) → Fe2+(aq) + I2(l)

 

R.A        O.A  

We have

1     I-(aq)      I2(l)              Oxidation half

2     Fe3+(aq)  Fe2+(aq)         Reduction half

 

Balancing redox equations

 It is important to make sure that the number of electrons lost by the reducing agent equals the number of electrons gained by the oxidizing agent in redox reactions.

There are two main methods that can be used to balance redox equations, they are

1.   The half-equation method and

 2.  The oxidation number method 

1      The half-equation method  

          b)      Balancing redox equation using half-equation methods

                   Rules for balancing redox equation using half-equation method

                   Solution

     Step I : Write down the oxidation number of every atom present

    Step II: Divide the equation into two half-equations (the oxidation half and the reduction half)

   Step III:       Balance each half-equation thus

                   a)       Balance other atoms apart from O and H, then balance O and finally balance the H

                   b)      Balance the charges by adding electrons to the left side for reduction half-equation                                   (gain) and to the right side for oxidation half-equation (loss).

  Step IV:     Cross-multiply each half-equation by the electron co-efficient of the other half-equation                            (to balance electron gain and loss)

  Step V:  Add the two half-equations to get the net-balanced equation; then include the state of matter.

                   Example: Balance the following ionic equation using half-equation methods

                   i)      Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s) 

                       ii)      Br-(aq)  +  Cl2(g) → Cl(aq) + Br2(l)

 

          Solution

          I        Step I

                   a)      Write out the O.N of every atom present

                    0       +2              +2               0
                                                           
                   Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s)

                  

                   b)      Divide the equation into 2 half-equations (oxidation-half and the reduction half)

                          Zn(s)    Zn2+             Oxidation half

                         Cu2+(aq)  Cu(s)           Reduction half

 

                   c)      Balance the atoms and then the charges using appropriate coefficients

                     Zn → Zn2+ + 2e   [Add electrons to the product side for oxidation]

                     Cu2+ + 2e → Cu   [ Add electrons to the reactant side for reduction.]

 

                   d)      Cross-multiply the electron coefficient to balance the electron gain or loss.

                            Zn  →  Zn2+  + 2e

                            Cu2+  + 2e  →  Cu

 

                   e)      Add the two half-equations to get the net balanced equation.

                            Zn(s) + Cu2+(aq) →Zn2+(aq)  + Cu(s) 

 

          II       Example 2

                   Write down the O.N of each atom or ion present

                   a)      Br + Cl2  →  Cl  +  Br2

         

                   b)      Divide the equation into two half-equations (oxidation half and the reduction half)

                            Br →  Br2       Oxidation

                            Cl2  +  2e-  →  Cl–   Reduction

 

                         c)      Balance each half equation by suing appropriate number of atoms and number of electrons.

                            Br → Br2 + 2e

                            Cl2 + 2e → 2Cl

 

                   d)      Cross-multiply the electron coefficient to balance the electron gain or loss.

                            2Br  →  Br2  +  2e

                              Cl2  +  2e   →  2Cl

                  

                   e)      Add the 2–half-equation   to get the net balanced equation.

                            2Br-(aq)  +  Cl2(g)  →  2Cl(aq) +  Br2(l)

 

The oxidation number method

          This method involves or follows five steps to balance redox equation. These steps are:

          a)       Assign O.N to all the elements in the reaction

          b)      Identify the oxidized species and the reduced specie from the O.N assigned.

          c)       Deduce the number of electrons lost by the R.A in the oxidation and gained by the O.A in the reduction (use lines to show the changes)

          d)      Multiply these numbers by appropriate factors (numbers) to make the electron lost equal the electron gained using these factors as balancing coefficients.

          e)       Inspect the equation to complete the balancing assigning states be sure it is complete hen add the states of matter.

 

                   b)      ZnS(s)  +  O2(g)    ZnO  +  SO2(g)

 

                   Solution

                   i)       Step I

                            Assign O.N for all the atoms present            

             +2   -2            0             +2   -2      +4 -2
                                                ↑ ↑
              ZnS(s)  +  O2(g)  
  ZnO  +  SO2(g)

                   ii)      Step II

                            Identify the oxidized specie and the reduced specie

                                 Loses 6 electrons

                            ZnS  +  O2  →  ZnO  +  SO2

                                       Gains 6e

                   ZnS is oxidized; the O.N of S increased from –2 in ZnS to +4 in SO2 (thereby losing 6 electrons) and O.N of O decreased from 0(zero) in O2 to –2 in ZnO and SO2.

 

                    iii)     Step III

                            Deduce the electron gain and electron loss and indicate with connecting lines.

 

                    iv)     Step IV

                            Multiply the electron gain and loss with co-efficient to make them equal. The sulphur atom loses 6 electrons and each O atom in O2 gains 2 electrons, as well as O in ZnO for a total of 6-electrons. If we put the coefficient in front of O2 it will give 3-atoms of O on the right-hand side of the equation; balancing the total number of electron gain and loss.

                            2ZnS + 3O2 → 2ZnO + SO2

 

                   v)      Step V

                            inspect the balancing to see if it is complete. The atoms are balanced but our coefficients must be whole numbers and so we multiply through by 2.

                            2ZnS(s) + 3O2(g) → 2ZnO(s) + 2SO2(g)

                       Check (Zn=2, S = 2, O = 6)         (Zn = 2, S = 2, O = 6)

                                                                 

 

 Example I

          Balance the following redox equations by oxidation number method

          i)       Cu(s) + HNO3 Cu(NO3)2 + 2H2O + O2

          ii)      ZnS(s) + O2(g)  ZnO(s) + SO2(g)

 

          Solution

          a)      Step I

                   Assign oxidation number to all elements in the reaction.

      0             +1   +5 –2               +2     +5 –2           +1   +2           +4 –2
      |             |   |   |           |     |  |         |    |        |   |  
     Cu  +  2 H N O3  
 Cu(NO3)2  +  H2O   +  NO2


 

          b)      Step II

                   Identify the oxidized and the reduced species from the change in the oxidation numbers. That is O.N of Cu increased from 0 to +2, so Cu was oxidized and the O.N of N decreased from +5 (in HNO3) to +4 (in NO2); HNO3 was reduced. 

 3        Step III

          Deduce electron lost and electron gained using connecting lines between the atoms. 2 electrons were lost by Cu in the oxidation and 7 electron was gained by N in the reduction.

                     loss 2e

          Cu + HNO3 Cu(NO3)2 + H2O + NO2

                                        gain 1e 

4        Step IV

          Multiply each equation by electron coefficient to balance electron gain or loss. So we will multiply the electron gain by the N by 2 and then put the coefficient of 2 in front of NO2 and HNO3.

          Cu + 2HNOCu(NO3)2 + H2O + 2NO2

 

5        Step V

          Complete the balancing (process) by inspection:  The N has become 4 on the right-hand side of the equation and so a 4 should be placed in front of HNO3.

          Cu + 4HNO3  Cu(NO3)2(q) + H2O(l) + 2NO2(g)

          We also place a 2 in front of H2O on the right-hand side of the equation to balance the H; and then add the states of matter.

          Cu(s) + 4HNO3  Cu(NO3)2(aq) + 2H2O(l) + 2NO2(g)
       Check        
               Reactants                                Product

    [Cu = 1,  N = 4, O = 12, H = 4]          [Cu = 1, N = 4, O = 12, H = 4]


 

Balancing complex ionic equations

To balance complex ionic equations; we take into consideration the reaction medium; where the reaction is occurring in an acidic medium or in an alkaline medium, and the half-equation method works best

1        To balance complex ionic equation occurring in acidic medium:  The rules are the same as stated earlier for balancing redox reactions but for some few additions as shown below

          2 Rules for balancing complex ionic equation occurring in an acidic medium

                  

     Step I : Write down the oxidation number of every atom present

    Step II: Divide the equation into two half-equations (the oxidation half and the reduction half)

   Step III:       Balance each half-equation thus

                   a)      To the reduction half-equation, add hydrogen ions (H+) to the LHS and water H2O to the RHS of the equation. Now balance the atoms using appropriate coefficients  

                   b)      Balance the charges by adding electrons to the left side for reduction half-equation                                   (gain) and to the right side for oxidation half-equation (loss).

  Step IV:     Cross-multiply each half-equation by the electron co-efficient of the other half-equation                            (to balance electron gain and loss)

  Step V:  Add the two half-equations to get the net-balanced equation; then include the state of matter.

Example 

1. Balance the following ionic equations occurring in and acidic medium

Tuesday, 1 October 2024

ALKANOIC ACID at a glance

 

ALKANOIC ACIDS

The alkanoic acids are a homologous series of organic compounds containing a carbonyl (-CO) group attached to the hydroxyl group (-OH).   They have the general molecular formula of CnH2n+1COOH and a functional group of R– COOH.

They are named by replacing the ending ‘e’ of the corresponding parent alkane with – oic acid. 

In the IUPAC method we take into consideration the functional group

    O
    ||
(–C–OH) and the positions of other substituents on the carbon chain.  The lowest number is given to the C- atom carrying the functional group.  

NAMING OF ALKANOIC ACIDS

The formular of the first 10 members of the series shown in the table below. Members. By applying the general molecular formular (CnH2n+1COOH) we have

When n=

General Molecular Formulae  CnH2n+1COOH

Name

0.

C0H2x0+1COOH =     HCOOH

Methanoic acid

1.

C1H2x1+1COOH   = CH3COOH

Ethanoic acid

2.

C2H2x2+1COOH    = C2H5COOH

Propanoic acid

3.

C3H2x3+1COOH    = C3H7COOH

Butanoic acid

4.

C4H2x4+1COOH     = C4H9COOH

Pentanoic acid

5.

C5H2x5+1COOH     = C5H11COOH

Hexanoic acid

6.

C6H2x6+1COOH     = C6H13COOH

Heptanoic acid

7.

C7H2x7+1COOH     = C7H15COOH

Octanoic acid

8.

C8H2x8+1COOH     =   C8H17COOH

Nonanoic acid

9.

C9H2x9+1COOH     =   C9H19COOH

Decanoic acid

10.

C10H2x10+1COOH  =  C10H21COOH

Undacanoic acid


 MOLECULAR STRUCTURES OF ALKANOIC ACIDS

N

ALKANOIC ACID

STRUCTURAL FORMULAR

MOLECULAR FORMULAR

1.

HCOOH

Methanoic acid

         O
          ||
         C -OH
          | 
         H  

HCOOH

2.

CH3COOH

Ethanol

      H   O
        |   ||
   H-C-C-OH
        |   
       H 

CH3COOH

3.

C2H5COOH

Propanoic acid

     H H  O
      |   |   ||
 H-C-C-C-OH
      |   |    
     H H 

CH3CH2COOH

4.

C3H7COOH

Butanoic acid

       H H H O
        |   |   |   ||
  H-C-C-C-C-OH
        |   |   |   
       H H H 

CH3(CH2)2COOH

5.

C5H11COOH

Pentanoic acid

      H H H H  O
       |   |    |   |   ||
  H-C-C-C-C-C-OH
        |   |   |   |    
       H H H H 

CH3(CH2)3COOH

6.

C6H13COOH

Hexanoic acid

      H H H H H  O
       |   |   |    |   |   ||
  H-C-C-C-C-C-C-OH
       |   |   |    |   |    
       H H H H H 

CH3(CH2)4COOH

7.

C7H15COOH

Heptanoic acid

     H H H H H H  O
      |   |    |   |   |   |   ||
 H-C-C-C-C-C-C-C-OH
       |   |   |   |   |   |    
      H H H H H H 

CH3(CH2)5COOH

8.

C8H17COOH

Octanoic acid 

      H H H H H H H  O
       |   |   |    |   |   |   |   ||
  H-C-C-C-C-C-C-C-C-OH
        |   |   |   |   |   |   |    
       H H H H H H H 

CH3(CH2)6COOH

9.

C9H19COOH

Nonanoic acid

      H H H H H H H H  O
      |    |   |   |   |   |    |   |   ||
 H-C-C-C-C-C-C-C-C-C-OH
      |   |   |    |    |   |   |   |    
     H H H H H H H H 

CH3(CH2)7COOH

10.

C10H21COOH

Decanoic acid

    H H H H H H H H H  O
     |   |    |  |    |   |   |   |   |   ||
H-C-C-C-C-C-C-C-C-C-C-OH
      |   |   |   |   |   |   |   |    |   |
      H H H H H H H H H H

CH3(CH2)8COOH


                                                                                                    


The alkanoic acids like the alkanols are classified into groups based on the number of caboxyl group present in the molecule. Thus we have  

1. Monocarboxylic acids: These are carboxylic acid which have only one -COOH per molecule. Examples include 

ii.   H   O

        |   ||
   H-C-C-OH
        |   
       H

2. Dicarboxylic acids: alkanoic acids with two -COOH groups. Examples include 


 (i)    C1OOH   
         |              Ethanedioic acid              C1OOH
    
(ii)  C2OOH   
         |                              
        C2H2
                                   
                                                             C3OOH
                                                            Propane-1,3-dioic acid 
3.  Tricarboxylic acids:-  These are carboxylic acids containig three carboxylic groups per molecule           



                  C1OOH
|
                  C2H – CH3
|
          CH3-C3 – CH3
|       
                  C4OOH
            2,2,3- trimethyl butan-1,3- dioic acid

In this chapter we will be concentrating on monocarboxylic acids.

-They are colourless liquid at room temperatures

-lower members behave as typical acids, but as the number of carbon atom increases their solubility in water as well as their acidic nature decreases

-they have higher boiling points than normal because of the presence of hydrogen bonding

The first two members of the series are methanoic acid HCOOH and ethanoic acid with general formula CH3COOH.

ETHANOIC ACID :- This is the second member of the series, it is a liquid at room temperature. it has a characteristic pungent smell.

LABORATORY PREPARATION OF ETHANOIC ACID

Ethanoic acid can be prepared in the laboratory in two ways or stages by oxidation of ethanol with potassium hexaoxodichromate (iv) (K2Cr2O7) acidified with tetraoxosulphate (vi) (H2SO4)

STAGE 1:              K2Cr2O7
               C2H5OH   →     CH3CHO + H2O
                Ethanol               Ethanal

                                     

STAGE 2:                      K2Cr2O7 
                       CH3CHO   →     CH3COOH
                        Ethanal                  ethanoic acid

PHYSICAL PROPERTIES OF ETHANOIC ACID

1. It is a colourless liquid

2. It has a pungent and characteristic  of vinegar odour

3. It has a boiling point of 1180C and freezes at temperature below 170C (glass-like crystals known as glacier ethanoic acids

4. It is very soluble in water

5. It is weak electrolyte.

CHEMICAL PROPERTIES OF ETHANOIC ACID

1.      i).  It turns blue litmus paper red

2.      2As an acid it reacts with alkalis and base to form salts called ethanoates (esters) and water    

 (i).  It reacts with sodium hydroxide (NaOH) to form sodium ethanoate (CH3COONa) and water

          CH3COOH + NaOH →CH3COONa + H2O

4.      ii) And with moderately reactive metals such as magnessium to liberate hydrogen gas.

            2CH3COOH + Mg   heat (CH3COO)2Mg+ H2

5.      When heated with soda lime (NaOH) it forms methane gas (CH4) and carbon (iv) oxide

          CH3COOH + NaOH →   CH4 + CO2 

3). ESTERIFICATION: -This is the process whereby alkanoic acids reacts with alkanol to form  alkanoate (ester) and water in the [presence of an acid as catalyst) 

RCOOH + ROH →   RCOOR + H2O        

 

 CH3COOH + CH3CH2OH → CH3COOCH2CH3 + H2O
                                          Ethyl ethanoate

CH3COOH + PCl5  → CH3COCl(l) + HCl(l) +  PCl3(l)

USES OF ETHANOIC ACID

1. As vinegar for preserving food

2. For making cellulose ethanoate

3 . For making non-inflammable safety film

4. For making textile fibres such as rayon

5. For making vinylethanoate which is used in emulsion paints,

6. It is used in making adhesives for wood, glass and paper

7. It is used  to coagulate rubber latex.

TEST FOR ALKANOIC ACIDS

1. It has a characteristic Pungent and sharp smell and turns blue litmus paper red.

2. Put some of the unknown substance into a solution sodium hydrogentrioxocarbonate (IV) (NaHCO3).  If there is effervescence and the of a gas is colourless, odourless and tasteless then the substance is ethanoic acid.  

Tuesday, 24 September 2024

ALKANOLS at a glance

 

ALKANOL

Alkanols are a homologous series of organic compounds containing one or more hydroxyl groups linked to an alkyl or aryl radicals. They have the general molecular formular of CnH2n+1OH and a functional group of OH. The first – two members of the series are both liquids. They are methanol (CH3OH) and ethanol (CH3CH2OH). Alkanols are named by replacing the "–e" in the parent alkanes by "–ol".

CLASSES OF ALKANOLS

 Alkanols are classified based on the number of hydroxyl groups in the molecule.

1.MONOHYDRIC ALKANOLS: These are alkanols that have only one hydroxyl group (OH) per molecule e.g

     CH3OH

    Methanol 

      

  CH3CH2OH    ethanol


  CH3CHCH3    propan-2-ol

           |                                                      OH                         

                                                               CH3CH2CHCH3                

                     |

                     OH

                 butan-2-ol


2.DIHYDRIC ALKANOLS: These are alkanols that contain two hydroxyl group (OH) per molecule.g

            CH2CH2                  

             |      | 

            OH  OH

      Ethan-1,2-diol


CH3CHCH2CH2
        |            |             
        OH       OH                        
     Butan-1,3-diol


3.TRIHYDRIC ALKANOLS: Alkanols that contains three hydroxyl group (OH) per molecule are know as trihydric alkanols. e.g

         CH2CHCH2                     

          |       |   |

         OH  OH OH

  Propan-1,2,3-triol

 

 CH2-CH-CH2-CH2
          |      |       |      

         OH  OH   OH                              Butan-1,2.4-triol


MONOHYDRIC ALKANOLS 

The table below shows the formular of the first 10 members of monohydric alkanol derived from the general molecular formular (CnH2n+1OH)

When n=

General Molecular Formulae CnH2n+1OH

Name

1

 CH3OH

Methanol

2.

 C2H5OH

Ethanol

3.

C3H7OH

Propanol

4.

 C4H9OH

Butanol

5.

 C5H11OH

Pentanol

6.

 C6H13OH

Hexanol

7.

 C7H15OH

Heptanol

8.

 C8H17OH

Octanol

9.

 C9H19OH

Nonanol

10.

 C10H21OH

Decanol

 

MOLECULAR STRUCTURES OF FIRST 10 MONOHYDRIC ALKANOLS

N

ALKANOL

STRUCTURAL FORMULAR

MOLECULAR FORMULAR

1.

CH3OH

Methanol

         H
          |
     H-C -OH
          |  
         H

CH3OH

2.

C2H5OH

Ethanol

      H  H
        |   |
   H-C-C-OH
        |   |
       H H

CH3CH2OH

3.

C3H7OH

Propanol

     H H H
      |    |   |
 H-C-C-C-OH
      |   |    |
      H H H

CH3(CH2)2OH

4.

C4H9OH

Butanol

       H H H H
        |   |   |   |
  H-C-C-C-C-OH
        |   |   |   |
       H H H H

CH3(CH2)3OH

5.

C5H11OH

Pentanol

      H H H H H
       |   |    |   |   |
  H-C-C-C-C-C-OH
        |   |   |   |   |  
       H H H H H 

CH3(CH2)4OH

6.

C6H13OH

Hexanol

     H H H H H H
       |   |   |    |   |   |
  H-C-C-C-C-C-C-OH
       |   |   |    |   |    |
       H H H H H H

CH3(CH2)5OH

7.

C7H15OH

Heptanol

     H H H H H H H
      |   |    |   |   |   |   |
 H-C-C-C-C-C-C-C-OH
       |   |   |   |   |   |    |
      H H H H H H H

CH3(CH2)6OH

8.

C8H17OH

Octanol

      H H H H H H H H
       |   |   |    |   |   |   |   |
  H-C-C-C-C-C-C-C-C-OH
        |   |   |   |   |   |   |    |
       H H H H H H H H

CH3(CH2)7OH

9.

C9H19OH

Nonanol

      H H H H H H H H H
      |    |   |   |   |   |    |   |   |
 H-C-C-C-C-C-C-C-C-C-OH
      |   |   |    |    |   |   |   |    |
     H H H H H H H H H

CH3(CH2)8OH

10.

C10H21OH

Decanol

      H H H H H H H H H H
      |  |   |   |  |   |   |   |   |   |    |
H-C-C-C-C-C-C-C-C-C-C-OH
      |   |   |   |   |   |   |   |    |    |
      H H H H H H H H H H

CH3(CH2)9OH


                  H
(i)               |
         CH3-C-OH                                    
                  |                                               
                 CH3                 
            Propan-2-ol

                

(ii)   CH3CH2C- OH
                       |    
                      CH3        Butan-2-ol


           

                    CH3                                      
(iii)               |                                           
           CH3-C-CH2OH        
                      CH3                                        

           2,2-dimethylpropan-1-ol             

 

                        CH3
(iv)                   |
                CH3-C-CH2CH2CH3
                         |                
                        OH
                    2-methylpentan-2-ol


                                        CH3                                                    
(v)              |                                                       
         CH3-C-CH2CHCH2CH3      
                   |           |                                           
                 CH3     OH                                    
           5,5-dimethylhexan-3-ol               

                           

                       OH      
                        |
     (vi)     OH-C-OH
                       |               
                     OH                                      
           methan-1,1,1,1-tetraol



                         CH3          OH OH                                                                    
(vii)                         |                |      |
       CH3-CH2CH2-C—CH—CH-CHCH3  
                                |       |                                                           
                               CH3  CH2CH3                                                
            5,5-dimethyl, 4-ethyloctan-2,3-diol                       


                                                                  
  (viii)     CH3CHCH2CHCH2CHCH3
                        |            |           |                
                       OH       OH      OH            
                   heptan-2,4,6-triol



                 

TYPES OF ALKANOLS

Alkanols can be classified into three types depending on the number of the alkyl group or H- atom  attached to the C-atom carrying (attached to) the  functional group (-OH). We have

1. PRIMARY ALKANOLS: These are alkanols in which the hydroxyl group (OH) is directly attached to a carbon atom. i.e                H    

Examples include                            

              H                           H   H                             H    H   H     H
               |                             |     |                               |      |     |       |
       H—C—OH          H—C – C – OH            H – C – C – C – C – OH
               |                            |      |                              |      |      |      |
              H                          H    H                             H    H    H    H
        Methanol                  ethanol                             propanol

2. SECONDARY ALKANOLS: These are alkanols in which the Carbon atom carrying the hydroxyl group (OH) is itself attached to two alkyl group (or two other carbon atoms) or one hydrogen atom. 

          i.e,                      H                                  
                                      |
                              R—C—OH                                               
                                      |
                                     R    

Examples include 

                 H                                  H                                     H    
(i)              |                  (ii)             |                        (iii)          |
     CH3—C—OH             CH3—C – CH2CH3         CH3 – C – CH2CH2CH3
                 |                                     |                                        |             
                CH3                              OH                                    OH
          Propan-2-ol                     Butan-2-ol                     Pentan-2-ol

3. TERTIARY ALKANOLS: These are alkanols in which the carbon-atom carrying the hydroxyl group (OH) is itself attached to three other alkyl group that is, no hydrogen attached to the carbon atom carrying the -OH group.         

                                                R                                                                
                                                 |
                                         R—C—OH                  
                                                 |
                                                R    

          Examples include

(i)           CH3                               CH3      CH3                                    
               |                                      |             |
   CH3—C—OH               CH3—C – CH­2CHCH3                
               |                                      |                     
              CH3                              OH                                              

  •   2-methylpropan-2-ol    2,4-dimethylpentan-2-ol               


       ETHANOL: This is the second and greatly used member of the series. it has a molecular formula of C2H5OH and a structural formula of 

                        H   H  
                         |      |                           
                 H—C – C – OH            
                         |      |            
                        H    H     

LABORATORY PREPARATION OF ETHANOL

Ethanol is prepared in the laboratory by the process hydrolysis iodoethane with an alkali

CH3CH2I + NaOH → CH3CH2OH + NaI

Industrially ethanol is prepared by

(i) Hydrolysis of ethene

     STAGE 1:

            C2H4 + H2SO4 → C2H5HSO4 
                                         Ethylhydrogen tetraoxosulphate (IV)  

    STAGE: II  

                      C2H5HSO4 + H2O →C2H5OH

 

(ii)  Fermentation: -This is a reaction in which simple sugar such as glucose (C6H12O6) is converted into ethanol (C2H5OH) and carbon (IV) oxide (CO2) by the action of an enzyme called zymase present in the yeast.

                        C6H12O6 → 2C2H5OH + CO2
   Glucose         ethanol


PREPARATION OF ETHANOL FROM STARCHY FOODS

The starchy food (like sweet potato) is first crushed, and pressure cooked using a pressure cooker for some time. The crushed potato releases starch granules and this starch granules are treated with malt (partially germinated barley) for an hour at about 600C. Malt contains the enzyme diastase. The starch contained in the potato is then converted by the enzyme diastase into maltose by hydrolysis.  

                                 Diastase     
 2(C6H10O5)n(s) + H2O(l) →    C12H22O11(aq)
                                 maltase     
 C12H10O11(aq) + H2O(l) →    2C6H12O6(aq)
                 Zymase     
 C6H12O6(aq)   →   2 C2H5OH(aq) + 2CO2(g)


reacts with 


OBJECTIVES

1. What is the major product formed when C2H5OH with

a. C2H5COOH

b.  C2H5COCH3 

c. CH3COOC2H5

d. C3H7COOH


2.


THEORY

1. What is fermentation

1a. with chemical equations only, show how ethanol can be produced from starch