easykemistry

Tuesday, 24 September 2024

ALKANOLS at a glance

 

ALKANOL

Alkanols are a homologous series of organic compounds containing one or more hydroxyl groups linked to an alkyl or aryl radicals. They have the general molecular formular of CnH2n+1OH and a functional group of OH. The first – two members of the series are both liquids. They are methanol (CH3OH) and ethanol (CH3CH2OH). Alkanols are named by replacing the "–e" in the parent alkanes by "–ol".

CLASSES OF ALKANOLS

 Alkanols are classified based on the number of hydroxyl groups in the molecule.

1.MONOHYDRIC ALKANOLS: These are alkanols that have only one hydroxyl group (OH) per molecule e.g

     CH3OH

    Methanol 

      

  CH3CH2OH    ethanol


  CH3CHCH3    propan-2-ol

           |                                                      OH                         

                                                               CH3CH2CHCH3                

                     |

                     OH

                 butan-2-ol


2.DIHYDRIC ALKANOLS: These are alkanols that contain two hydroxyl group (OH) per molecule.g

            CH2CH2                  

             |      | 

            OH  OH

      Ethan-1,2-diol


CH3CHCH2CH2
        |            |             
        OH       OH                        
     Butan-1,3-diol


3.TRIHYDRIC ALKANOLS: Alkanols that contains three hydroxyl group (OH) per molecule are know as trihydric alkanols. e.g

         CH2CHCH2                     

          |       |   |

         OH  OH OH

  Propan-1,2,3-triol

 

 CH2-CH-CH2-CH2
          |      |       |      

         OH  OH   OH                              Butan-1,2.4-triol


MONOHYDRIC ALKANOLS 

The table below shows the formular of the first 10 members of monohydric alkanol derived from the general molecular formular (CnH2n+1OH)

When n=

General Molecular Formulae CnH2n+1OH

Name

1

 CH3OH

Methanol

2.

 C2H5OH

Ethanol

3.

C3H7OH

Propanol

4.

 C4H9OH

Butanol

5.

 C5H11OH

Pentanol

6.

 C6H13OH

Hexanol

7.

 C7H15OH

Heptanol

8.

 C8H17OH

Octanol

9.

 C9H19OH

Nonanol

10.

 C10H21OH

Decanol

 

MOLECULAR STRUCTURES OF FIRST 10 MONOHYDRIC ALKANOLS

N

ALKANOL

STRUCTURAL FORMULAR

MOLECULAR FORMULAR

1.

CH3OH

Methanol

         H
          |
     H-C -OH
          |  
         H

CH3OH

2.

C2H5OH

Ethanol

      H  H
        |   |
   H-C-C-OH
        |   |
       H H

CH3CH2OH

3.

C3H7OH

Propanol

     H H H
      |    |   |
 H-C-C-C-OH
      |   |    |
      H H H

CH3(CH2)2OH

4.

C4H9OH

Butanol

       H H H H
        |   |   |   |
  H-C-C-C-C-OH
        |   |   |   |
       H H H H

CH3(CH2)3OH

5.

C5H11OH

Pentanol

      H H H H H
       |   |    |   |   |
  H-C-C-C-C-C-OH
        |   |   |   |   |  
       H H H H H 

CH3(CH2)4OH

6.

C6H13OH

Hexanol

     H H H H H H
       |   |   |    |   |   |
  H-C-C-C-C-C-C-OH
       |   |   |    |   |    |
       H H H H H H

CH3(CH2)5OH

7.

C7H15OH

Heptanol

     H H H H H H H
      |   |    |   |   |   |   |
 H-C-C-C-C-C-C-C-OH
       |   |   |   |   |   |    |
      H H H H H H H

CH3(CH2)6OH

8.

C8H17OH

Octanol

      H H H H H H H H
       |   |   |    |   |   |   |   |
  H-C-C-C-C-C-C-C-C-OH
        |   |   |   |   |   |   |    |
       H H H H H H H H

CH3(CH2)7OH

9.

C9H19OH

Nonanol

      H H H H H H H H H
      |    |   |   |   |   |    |   |   |
 H-C-C-C-C-C-C-C-C-C-OH
      |   |   |    |    |   |   |   |    |
     H H H H H H H H H

CH3(CH2)8OH

10.

C10H21OH

Decanol

      H H H H H H H H H H
      |  |   |   |  |   |   |   |   |   |    |
H-C-C-C-C-C-C-C-C-C-C-OH
      |   |   |   |   |   |   |   |    |    |
      H H H H H H H H H H

CH3(CH2)9OH


                  H
(i)               |
         CH3-C-OH                                    
                  |                                               
                 CH3                 
            Propan-2-ol

                

(ii)   CH3CH2C- OH
                       |    
                      CH3        Butan-2-ol


           

                    CH3                                      
(iii)               |                                           
           CH3-C-CH2OH        
                      CH3                                        

           2,2-dimethylpropan-1-ol             

 

                        CH3
(iv)                   |
                CH3-C-CH2CH2CH3
                         |                
                        OH
                    2-methylpentan-2-ol


                                        CH3                                                    
(v)              |                                                       
         CH3-C-CH2CHCH2CH3      
                   |           |                                           
                 CH3     OH                                    
           5,5-dimethylhexan-3-ol               

                           

                       OH      
                        |
     (vi)     OH-C-OH
                       |               
                     OH                                      
           methan-1,1,1,1-tetraol



                         CH3          OH OH                                                                    
(vii)                         |                |      |
       CH3-CH2CH2-C—CH—CH-CHCH3  
                                |       |                                                           
                               CH3  CH2CH3                                                
            5,5-dimethyl, 4-ethyloctan-2,3-diol                       


                                                                  
  (viii)     CH3CHCH2CHCH2CHCH3
                        |            |           |                
                       OH       OH      OH            
                   heptan-2,4,6-triol



                 

TYPES OF ALKANOLS

Alkanols can be classified into three types depending on the number of the alkyl group or H- atom  attached to the C-atom carrying (attached to) the  functional group (-OH). We have

1. PRIMARY ALKANOLS: These are alkanols in which the hydroxyl group (OH) is directly attached to a carbon atom. i.e                H    

Examples include                            

              H                           H   H                             H    H   H     H
               |                             |     |                               |      |     |       |
       H—C—OH          H—C – C – OH            H – C – C – C – C – OH
               |                            |      |                              |      |      |      |
              H                          H    H                             H    H    H    H
        Methanol                  ethanol                             propanol

2. SECONDARY ALKANOLS: These are alkanols in which the Carbon atom carrying the hydroxyl group (OH) is itself attached to two alkyl group (or two other carbon atoms) or one hydrogen atom. 

          i.e,                      H                                  
                                      |
                              R—C—OH                                               
                                      |
                                     R    

Examples include 

                 H                                  H                                     H    
(i)              |                  (ii)             |                        (iii)          |
     CH3—C—OH             CH3—C – CH2CH3         CH3 – C – CH2CH2CH3
                 |                                     |                                        |             
                CH3                              OH                                    OH
          Propan-2-ol                     Butan-2-ol                     Pentan-2-ol

3. TERTIARY ALKANOLS: These are alkanols in which the carbon-atom carrying the hydroxyl group (OH) is itself attached to three other alkyl group that is, no hydrogen attached to the carbon atom carrying the -OH group.         

                                                R                                                                
                                                 |
                                         R—C—OH                  
                                                 |
                                                R    

          Examples include

(i)           CH3                               CH3      CH3                                    
               |                                      |             |
   CH3—C—OH               CH3—C – CH­2CHCH3                
               |                                      |                     
              CH3                              OH                                              

  •   2-methylpropan-2-ol    2,4-dimethylpentan-2-ol               


       ETHANOL: This is the second and greatly used member of the series. it has a molecular formula of C2H5OH and a structural formula of 

                        H   H  
                         |      |                           
                 H—C – C – OH            
                         |      |            
                        H    H     

LABORATORY PREPARATION OF ETHANOL

Ethanol is prepared in the laboratory by the process hydrolysis iodoethane with an alkali

CH3CH2I + NaOH → CH3CH2OH + NaI

Industrially ethanol is prepared by

(i) Hydrolysis of ethene

     STAGE 1:

            C2H4 + H2SO4 → C2H5HSO4 
                                         Ethylhydrogen tetraoxosulphate (IV)  

    STAGE: II  

                      C2H5HSO4 + H2O →C2H5OH

 

(ii)  Fermentation: -This is a reaction in which simple sugar such as glucose (C6H12O6) is converted into ethanol (C2H5OH) and carbon (IV) oxide (CO2) by the action of an enzyme called zymase present in the yeast.

                        C6H12O6 → 2C2H5OH + CO2
   Glucose         ethanol


PREPARATION OF ETHANOL FROM STARCHY FOODS

The starchy food (like sweet potato) is first crushed, and pressure cooked using a pressure cooker for some time. The crushed potato releases starch granules and this starch granules are treated with malt (partially germinated barley) for an hour at about 600C. Malt contains the enzyme diastase. The starch contained in the potato is then converted by the enzyme diastase into maltose by hydrolysis.  

                                 Diastase     
 2(C6H10O5)n(s) + H2O(l) →    C12H22O11(aq)
                                 maltase     
 C12H10O11(aq) + H2O(l) →    2C6H12O6(aq)
                 Zymase     
 C6H12O6(aq)   →   2 C2H5OH(aq) + 2CO2(g)


reacts with 


OBJECTIVES

1. What is the major product formed when C2H5OH with

a. C2H5COOH

b.  C2H5COCH3 

c. CH3COOC2H5

d. C3H7COOH


2.


THEORY

1. What is fermentation

1a. with chemical equations only, show how ethanol can be produced from starch





 

Wednesday, 18 September 2024

OXIDATION NUMBER at a glance

 Oxidation number (O.N) of an element is the charge on an atom of the element whether it is by itself or bonded to another atom. It indicates the number of electrons the atom has gained or lose at that moment. That is, it is the charge an element will have if electrons were transferred to or from it. It is usually zero (0) for an element in the uncombined state. It is also referred to as the oxidation state of the element

          NOTE: - The sign or charge for O.N is written before the number (–2) but it is written after the number for an ionic charge i.e O2–

Rules for calculating oxidation number

The following rules are applied when assigning an oxidation number or calculating the oxidation number of an element thus

1.       The O.N of oxygen is always equal to -2 except in peroxides (–1)

2.   O.N of hydrogen is always equal to plus one (+1) except again in metallic hydrides (–1).

3.        The O.N for an element in the elemental (or ground) state O.N = O (zero) e.g.

          Na = O, Cl2 = O,  O2 = O etc.

4.   For an for a simple ion is equal to the charge on it for example 

   Na+ = +1,   Cl = –1,     O2–  =  -2

5. Oxidation number of a radical is equal to the charge on it e.g  CO32- = –2,  NO3=-1,  SO42- =-2

3   The  O.N of a compound is equal O (because it is the sum of the e.g.

   H2O = O, 

 i.e (O.N of H × no of H atoms) + (O.N of O) =

      (+1 x 2) + ( -2 x1) 

          2 -2 = 0

NaOH = (+1 x1) + (-2 x 1) + (1 x 1) 

                         +1 - 2+ 1

                           +2-2=0

      

Rules for specific groups in the PT.

I        For group 1A elements (comprising Li,Na,K, e.t.c) their O.N = +1

II       For group 2A elements (comprising Be, Mg, Ca e.t.c) their O.N = +2 in all compounds

III     For group 3 elements (B, Al, e.t.c) their O.N = +3 especially in their binary compounds.

IV     For group 5 = -3

V     For group 6 = -2 except Oxygen (O) in peroxides).

 VI   For group 7 = –1 respectively especially in their binary compounds 

 

Determination of the oxidation number of an element

1   Find the O.N of the underlined elements in the following

  a). ZnCl2        b). SO3      c). NO3-         d). Ca2+

          Solution

  To determine the O.N of the underlined elements, we must follow the general rules for calculating O.N of an element.

   a). ZnCl2: The O.N of a compound is zero, i.e. ZnCl2  = O. 

Since Cl is a group 7(A) element and ZnCl2 is a binary compound then the O.N of Cl is –1, therefore, the O.N of Zn is

    (O.N of Zn) + (O.N of Cl ´ 2) = 0
                   x + (–1 ´ 2) = 0
                   x – 2 = 0
                   x = +2

 

          b)      SO3

                    Solution

(O.N of S) + (O.N of 0 ´ 3) = 0
            x + (–2 ´ 3) = 0
             x – 6 = 0
           x = +6

      Trioxosulphate(IV) ion


   c)        NO3-

                   Solution

        The O.N of a radical is equal to the charge on it, hence

                    NO3- =  –1
                   that is,
     
 (O.N of N) + (O.N of 0x3) = –1

                   x + (–2x3) = –1
                   x – 6 = –1
                   x = +6 – 1
                    =  +5

   Trioxonitrate (V) ion

    d)Ca2+  The O.N of an ion is the charge on it, i.e., Ca2+ = +2  Calcium  = ion

 Uses of oxidation number

Oxidation number is used for the

1.   It is used in the IUPAC (International Union of Pure and Applied chemistry) system of naming compounds e.g. H2SO4: Tetraoxosulphate(VI) acid

2. It is used to know the oxidation state or number of an element in a compound 

 

OBJECTIVE QUSETION

1.       Which species undergoes reduction in the reaction represented by the equation below?

  H2S(aq)+2FeCl3(aq)S(s) + 2HCl +3FeCl2

   (a) Fe3+    

   (b). H2S            

   (c). Cl     

   (d)  S

2. Oxidation is a reaction which involves the following except 

   (a). Loss of electrons

   (b). Increase in oxidation number 

   (c). Gain of oxygen 

   (d). addition of hydrogen


 The O.N of the following underlined elements are 

      3.        Na2SO4               

          (a)  +4,  

          (b)  -2,  

          (c)  +6

          (d)  –5

      4.     Al (H2O)6]3+         

           (a) +3

           (b) –3

           (c) +6

           (d) –6

     5.     K2Cr2O7             

           (a) +5

           (b) +4

           (c) –6

           (d) +6

      6.     Mn                                     

           (a) +6

           (b) +7

           (c) +5

           (d) +3


THEORY QUESTION

2. Find the oxidation numbers of the following underlined elements.

  (a) K2Cr2O7             (b) KMnO4         (c) HNO3

  (d). S2-                   (e). Cl-              (f). Cr2


2.a State two applications of oxidation numbers 

b.  What is the oxidation state of manganese in each of the following species?

 i.  MnO2   ii MnO4-    iii.   MnCl2


Thursday, 12 September 2024

SODIUM at a glance

 

Sodium:  is found in group 1 period III on the periodic table. It has an atomic number of 11 and an atomic mass of 23. 

 It does not occur as a free element in nature because it is very reactive. However, it is found mainly in the combined state as sodium chloride in sea water, and as rock salt (Halite) in underground deposits. 

It is extracted from fused sodium chloride by electrolysis using the Dawn's Cell. a little amount of CaCl2 is added to lower the melting point (from about 801 to 600)

 Chemistry of the reaction

at the cathode

At the cathode: - the sodium ions migrate to the cathode where they gain an electron each to become reduced to metallic sodium

          Na+(l) + e- → Na(s)

At the anode: - the chloride ions migrate to the anode where they loss their excess charge/electrons and become reduced to atomic chlorine

                Cl- → Cl + e-

the chlorine atom combines with another chlorine atom and is discharged as chlorine gas

          Cl + Cl → Cl2(g)                                                                                     

Properties of Sodium:

i.       Sodium is soft and can easily be cut with a knife.

ii.       It has a of 0.968g/cm

iii.      It has a silvery-white appearance.

iv.        It has a low melting point.

v.        It has a high boiling point.

v.        Sodium is a good conductor of electricity.

Chemical Properties

i)                   Reaction with air or oxygen: - Sodium metal tarnishes on exposure to air

 4Na(s) + O2(g) →2Na2O(s)

  Na2O(s) + H2O(l) 2NaOH (s)   

   NaOH(aq) + CO2 Na2CO3  

 In excess air or oxygen, it burns with a golden/bright  yellow flame to yield sodium peroxide Na2O2,

     2 Na(s) + O2(g) Na2O2(s)

 In limited supply of air sodium oxide (Na2O) is formed.

       Na(s) + O2(g) → 2Na2O(s)

 Because of its reactivity sodium is stored under paraffin oil or other organic solvents like naphtha or toluene.

ii.     Reaction with water: - It reacts violently with cold water to yield sodium hydroxide and hydrogen with large amount of heat.

Na(s) + H2O(l) → NaOH(aq) + H2(g)

iii.      Reaction with acids: - It reacts explosively to form a salt and hydrogen gas  

   Na(s) + HCl(aq) NaCl(aq) + H2(g)

      Na(s) H2SO4(aq) Na2SO4(aq) + H2(g)

 This reaction is highly dangerous and should not be carried out in the school laboratory.

Reaction with non-metals: - sodium combines directly with the following non-metals when heated to form binary compounds.  

               Na(s) + S(s) Na2S(s)

               Na(s) + H2 NaH(s)

               Na(s) +P(s) Na3P(s)

              Na(s) + Cl(g) NaCl(s)

Sodium does not react with carbon, boron and nitrogen

Reaction with mercury: - Sodium forms various stable mixture with mercury known as sodium amalgam of varying composition such as  NaHg, Na2Hg, Na3Hg etc.

Sodium amalgam reacts with water to yield hydrogen.

          Na(s) + Hg(l) NaHg(l)

v.                  Reaction with ammonia: - Sodium reacts with ammonia to form sodamide and hydrogen gas.

 Na(s) + NH3(g) NaNH2(s) + H2(g)

 As a reducing agent: - Sodium act as a strong reducing agent. It reduces some metallic chlorides and oxides to their metals.    

 Na(s) + BeCl2(s) NaCl(s) + Be(s)

Test for sodium ions

i).   Flame test: when sodium compounds give a bright or golden yellow flame when burnt in a non-luminous flame

Uses of Sodium:

-i). Sodium is used in the manufacture of other compounds like sodamide, sodium peroxide.

ii). Sodium alloys like  NaK(sodium-potassium alloy), are used as coolant in nuclear reactors.

iii). Sodium vapor lamps are commonly used for street lighting

iv) It is used in the manufacture of tetraethyl lead (C2H5)4Pb, which is used as an antiknock agent in petrol.

v) It is used as a laboratory reagent (Lassaigne's extract).

vii). It is used for producing amalgams used as reducing agents.

viii)  Sodium used as a catalyst in the preparation of artificial rubber and also as a deoxidizer in the preparation of light alloys.

COMPOUNDS OF SODIUM

 Sodium compounds are generally white crystalline salts and are mostly soluble in water.

1.      Sodium chloride (NaCl): (table salt) it is found naturally in sea water and in underground deposits as rock salt.

Properties

- It is a white anhydrous crystalline solid

- It has a melting point of 8010C and a boiling point of 14200C.

- The pure form is not deliquescent.

Uses

1. It is used as a food preservative.

2. It is used as an important raw material for the manufacturing of Na, NaOH, Cl2, Na2CO3, NaClO3 and other compounds.

3.  It is used for salting out soap

4. It is used in glazing earthenware

5.  It is used in regenerating water softener.

2.  Sodium hydroxide (NaOH):  It is a white crystalline solid, made into flakes or pallets

Properties

-i). It is a white crystalline solid

ii).  It is highly deliquescent 

iii) It has a melting point of 3200C without decomposing.

iii).  It dissolves in water to give a strong alkaline solution with the evolution of heat

Chemical properties

With acids: - NaOH produce salt and water.

2NaOH(aq) + H2SO4(aq) → Na2SO4(aq) + 2H2O(l)

With acidic oxides: - It form sodium salt. E.g.

NaOH(aq) + SO2(g) → NaHSO3(aq)

With ammonium salts: - When heated with an ammonium salt, ammonia gas is liberated.

NaOH(aq) + NH4Cl(s)→ NaCl(aq) + H2O(l) + NH3(g)

With metals – Al and Zn are amphoteric; they combine with excess NaOH to form the  alluminate (III) and respectively with hydrogen gas. 

2Al(s) + 2NaOH(aq) + 6H2O(l)  2NaAl(OH)4(aq) + 3H2(g)

                                                                        sodium aluminate (III)

Zn(s) + 2NaOH(aq) + 2H2O(l)  Na2Zn(OH)4(aq) + H2(g)

                                                                        sodium zincate (II)

Therefore, Aluminium or Zinc containers should not be used to store NaOH.

As a precipitating agent: - NaOH solution is most times used to precipitate insoluble hydroxides. E.g

Zn2+(aq) + 2OH-(aq) → Zn(OH)2(s)

Pb2+(aq) + 2OH-(aq) → Pb(OH)2(s)`

Zn(OH)2, Al(HO)3, Sn(OH)2, and Pb(OH)2, are amphoteric and will react excess sodium hydroxide to form complex salts. E.g

Zn(OH)(s) + 2NaOH(aq) → Na2Zn(OH)4(aq)

With non-metals: NaOH reacts with various non-metals to form sodium salts.

Reaction with glass – High concentrations of NaOH attack glass to form sodium trioxosilicate (IV). Hence, glass stoppers are not used to cover reagent bottles containing concentrated sodium hydroxide or burette because they would become stuck. This is called etching.          

Uses of NaOH

1. it is used as a strong alkali

2. it is used as an analytical and precipitating reagent

3. it is used for absorbing CO2

4. it is used for making soap, rayon (artificial silk), 

5. I is used for making paper 

6. it is used for making various compounds like sodium trioxochlorate (V), sodium methanoate and phosphine.

7. it is used for purification of bauxite

8. it is used petroleum refining.

9. it is used for the bleaching of cotton textiles.

3.Sodium tetraoxosulphate (IV) (Na2SO4)

Properties

It occurs both in the anhydrous form called saltcake or as a decahydrate form known as Glauber’s salt which is efflìorescent.

Uses Of Na2SO4

i.  It is used as a purgative

ii.   In producing of sodium sulphide

Iii it is in the manufacture of wood pulp, glass, and detergents

4. Sodium bicarbonate (NaHCO3): (baking soda): - A white it is utilized in cooking and as a leavening agent in baking.

- Sodium carbonate (Na2CO3): Also called soda ash

Properties

-Na2CO3 in form of soda ash (i.e. anhydrous Na2CO3) is a fine white powder, while washing soda (Na2CO3.10H2O) is translucent and crystalline.

i. They both dissolve in water to form an alkaline solution by hydrolysis.

ii. Washing soda is efflorescent

iii. It does not decompose on heating

iii. t reacts with acid to liberate CO2

Uses of Na2CO3

i. It is used in the industrial manufacturing of glass

ii.  It is used as a water softener

iii.  It is used in manufacturing of detergent

iv. It is used in the manufacturing NaOH, borax, waterglass, soap and paper

iv.  It is used in laboratory to standardize acids and as an analytical reagent.

vi.  it is used in glass production,

vi.                It is used as a pH regulator in various industrial processes

SOLVAY PROCESS: This is the industrial preparation of NaCO3

The raw materials are sodium chloride, ammonia gas and limestone. The reactions are as follows

1.The ammonia gas in brine (conc. sodium chloride) to give a mixture known as ammoniacal brine.     

ii. This mixture is then allowed to trickle down a Solvay tower as a stream of carbon (IV) oxide is forced up the tower. It reacts with the ammonia in the mixture to yield ammonium hydrogen trioxocarbonate (IV) (NH4HCO3). 

  i).  NH3(g) + CO2(g) +H2NH4HCO3(aq)

The NH4HCO3 reacts with the sodium chloride to give sodium hydrogen trioxocarbonate (IV) (NaHCO3). 

   ii). NH4HCO3(aq) + NaCl(aq) NaHCO3(s) + NH4Cl(aq)

The sodium hydrogen trioxocarbonate (IV) is slightly insoluble in water and so precipitates out as a white sludge. 

 The NaHCO3 is then filtered, rinsed and heated to give anhydrous sodium trioxocarbonate (IV) (soda ash), steam and carbon (IV) oxide

  

 iii). NaHCO3(s) Na2CO3(s) + H2O(l) + CO2(g)

The anhydrous Na2CO3(s) (soda ash) is redissolved in hot water and recrystallize to give the pure hydrated compound (Na2CO3.10H2O) called washing soda

    iv). Na2CO3(s) + 10H2O(l) Na2CO3.10H2O(s)

some highlights of the process

-Perforated dome-shaped baffle-plates are incorporated into the Solvay tower to slow down the flow rate of the ammoniacal brine so as to allow for proper contact between the ammoniacal brine and the carbon (IV) oxide as well as increase the surface area of reaction

-The concentrated sodium chloride also serves as a carrier for the ammonia gas.

Importance and Economics of the reaction: - 

i. All the raw materials required in the Solvay process are quite cheap and are also readily available. 

ii. Almost all the carbon (IV) oxide generated during the process from the decomposition of the NaHCO3(s) is recycled, making the process quite economical. 

iii. The sodium chloride solution is obtained from sea water or from rock salt deposits,

iv.  the carbon (IV) is got from limestone found in rich deposits around.

     CaCO3(s) →CaO(s) + CO2(g)

The calcium oxide (CaO) is then reacted with the ammonium chloride to generate ammonia gas, which is also recycled back into the, producing calcium chloride as a by-product from the process.

    CaO(s) + NH4Cl(aq)CaCl2 +H2O+ NH3(g)


 5. Sodium nitrate (NaNO3): It is a white crystalline solid produced when sodium hydroxide reacts with trioxonitrate (V) acids.

Properties

I). it is a white crystalline solid

ii). It has a melting point of 3100C and decomposes on further heating.

Uses

i)  it is used primarily as a nitrogenous fertilizer

ii)  In making trioxonitrate (V) acid, potassium trioxonitrate (V) and sodium dioxoxnitrate (III).

iii). It is used in the production of explosives and glass.

Objective questions 

1.


THEORY QUESTIONS 

1. Explain with equations where appropriate the functions of the following substances in the Solvay Process (i) limestone  (ii). ammonia (iii). brine.

2. Calculate the mass of sodium trioxocarbonate (IV) produced by the complete decomposition of 16.8g of sodium hydrogen trioxocarbonate (IV). [ H=1, O=16, Na=23, S=33]



Monday, 9 September 2024

ALKYNES at a glance

 UNSATURATED HYDROCARBON (ALKYNES)

Alkynes are a homologous series of unsaturated hydrocarbons containing at least one triple bond. It has a functional group of (≡) and general molecular formular of CnH2n-2 where n= 1,2,3, ... n for successive members of the group. 

The first member of the alkyne family is ethyne (acetylene).

 Alkynes are named by replacing ending –ane  of the corresponding alkane with –yne.

 

NOTESince alkynes contain triple bonds between C≡C therefore n=1 is not visible.

When n=

General Molecular Formulae CnH2n-2

Name

2.

C2H2x2-2 = C2H2

Ethyne

3.

C3H2x3-2 = C3H4

Propyne

4.

C4H2x4-2 = C4H6

Butyne

5.

C5H2x5-2 = C5H8

Pentyne

6.

C6H2x6-2 = C6H10

Hexyne

7.

C7H2x7-2 = C7H12

Heptyne

8.

C8H2x8-2 = C8H14

Octyne

9.

C9H2x9-2 = C9H16

Nonyne

10.

C10H2x10-2 = C10H18

Decyne

11.

C11H2x11-2 = C11H20

Undacyne

12.

C12H2x12-2 = C12H22

Dodecyne

13.

C13H2x13-2 = C13H24

Tridecyne

14.

C14H2x14-2 = C14H26

Tetradecyne

15.

C15H2x15-2 = C15H28

Pentadecyne

16.

C16H2x16-2 = C16H30

Hexadecyne

17.

C17H2x17-2 = C17H32

Heptadecyne

18.

C18H2x18-2 = C18H34

Octadecyne

19.

C19H2x19-2 = C19H36

Nonadecyne

20.

C20H2x20-2 = C20H38

Icosyne/Eiocosyne



 

 MOLECULAR STRUCTURES OF ALKYNES

N

ALKYNES

STRUCTURAL FORMULAR

MOLECULAR FORMULAR

2.

C2H2

Ethyne

    

 H-C≡C-H

    

HC≡CH

3.

C3H4

Propyne

                                                             H

 H-C-C≡C-H

      H

CH3C≡CH

4.

C4H6

Butyne

     H H

 H-C-C-C≡C-H

     H H

CH3CH2C≡CH

5.

C5H8

Pentyne

     H H H

 H-C-C-C-C≡C-H

     H H H

CH3(CH2)2C≡CH

6.

C6H10

Hexyne

     H H H H

 H-C-C-C-C-C≡C-H

     H H H H

CH3(CH2)3C≡CH

7.

C7H12

Heptyne

     H H H H H

 H-C-C-C-C-C-C≡C-H

     H H H H H

CH3(CH2)4C≡CH

8.

C8H14

Octyne

     H H H H H H

 H-C-C-C-C-C-C-C≡C-H

      H H H H H H

CH3(CH2)5C≡CH

9.

C9H16

Nonyne

      H H H H H H H

 H-C-C-C-C-C-C-C-C≡C-H

     H H H H H H H  

CH3(CH2)6C≡CH

10.

C10H18

Decyne

      H H H H H H H H

 H-C-C-C-C-C-C-C-C-C≡C-H

      H H H H H H H H

CH3(CH2)7C≡CH

NOMENCLATURE OF ALKYNES

The nomenclature of alkynes is similar to that of alkenes in many respects as shown in the structures below. The only difference lies on the type of bonds, in alkenes (double bond) and alkynes (triple bond).

 

(i)         CH3-CH2-C≡CCH3              

                    Pent-2-yne  


  (ii)        CH3CH2CH2C≡CCH3    

                       hex-2-yne

            C1H3                                         C1H3
                 |                                                            |   
(iii)       C2HC3≡C4C5H3              (iv)    C2H2-C3≡C4-C5H2
                                      |                                                                  |
                                     CH3                                                            C6H3
             4-methylpent-2-yne                                 hex-3-yne

               CH3                                                        CH3          CH3
                          |                                                                           |                 |
(v)        CH3CHC≡CCHCH3                (vi)       C1H3C2-C3≡C4-C5-C6H3
                                         |                                                  |                 |
                                  CH3                                           CH3          CH3
            2,5-dimethylhex-3-yne                         2,2,5,5-tetramethylhex-3-yne

                          CH3
                                            |            
(vii)      CH3CH-C ≡CC-CH2CH3                (viii)     CH3C≡CCH2
                          |              |                                                               |
                    CH3        CH3                                                        CH3
             2,5,5-trimethylhept-3-yne                          pent-2-yne

                 CH3                                                                          CH3 
                        |                                                                                |
(ix)       CH≡CC-C=CCH—CH2CH2C≡CH               (x)        CH3C-CHC≡CC≡CC≡CH 
                        |              |                                                                 |
                      CH3      CH2CH3                                                      CH2CH3  

    6-ethyl,3,3-dimethyldec-1,6-diyne                 8-ethyl, 8-methylnon-1,3,5-triyne

                                                                Cl
                                                                                        |
(xi)       CH3C≡CCHCH3                        (xii)      CH3-C-C≡CH 
                             |                                                          |
                            Cl                                                       Cl
            4-chloropent-2-yne                                         3,3-dichlorobut-1-yne

(xiii)     CH3CHC≡CC≡CCHCH3                (xiv)     CH3CHC≡CCHC≡CH  
                     |                     |                                                |            |
                   Cl                   Br                                             Cl         Cl
          2-bromo, 7-chlorooct-3,5-diyne                     3,6-dichlorohept-1,3-diyne

                             H    
                              |
                         H-C-H      
                              |
              H H H      |         
              |    |     |     |
(xv)  H-C6-C5-C4-C3C2≡C1H
              |    |     |     |
             H H H       |
                               |
                          H-C-H
                               |
                              H
            3,3-dimethylhex-1

LABORATORY PREPARATION OF ETHYNES (ALKYNES)

Ethyne is prepared in the laboratory by adding cold water into calcium dicarbide (CaC2). Much heat evolved and sand is placed beneath the flask to protect the flask from breakage. Ethyne is collected over water. The main impurity, phosphine, PH3 is absorbed by the acidified CuSO4 solution.







 

CaC2  +  2H2O → Ca(OH)2  +  C2H2.

                                                 Ethyne

 

 

PHYSICAL PROPERTIES OF ETHYNE

1. It is colourless gas

2. It has sweet smell when pure

3. Almost insoluble in water

4. It is neutral to litmus

5. It is strongly exothermic

CHEMICAL PROPERTIES OF ETHYNE

 Alkynes such as ethyne also undergoes addition reaction – a reaction in which one molecule of a compound is simply added on to the alkynes at the position of the carbon – carbon triple bond (C≡C) and this is converted to carbon – carbon single bond (C-C) that is, the alkanes. Examples of addition reaction are:

1.     Reaction of ethyne with hydrogen in the presence of nickel as a catalyst

  •                                       Ni
  •             CH≡CH + 2H2   →   CH3CH3   
  •             ethyne                           ethane

2. Reaction of ethyne with bromine to produce 1,1,2,2-tetrabromoethane. The reddish brown colour of bromine is destroyed.

            CH≡CH + 2Br2 → CHBr2-CHBr2

3. Reaction of ethyne with chlorine to produce hydrogen chloride

            CH≡CH + Cl2 → 2C+ 2HCl

4. Reaction of ethyne with oxygen or combustion reaction of ethyne (alkynes) to produce carbon(iv)oxide and water

            2CH≡CH + 5O2 4CO2 + 2H2O

5. Polymerization reaction of ethyne to produce benzene.

            3C2H2 → C6H6 

6. Reaction of ethyne with water in the presence of dilute H2SO4 and mercury as a catalyst to produce ethanal

            CH≡CH + H2O →CH3CHO

7. Reaction of ethyne with KMnO4 to produce 1,2-ethan-diol (glycol)

            CH≡CH +KMnO4 →CH2-CH2
                                               |          |
                                               OH   OH
                                               1,2-ethan-diol

USE OF ETHYNE

1. In oxy-acetylene flame for welding and cutting of metals

2. In oxy-acetylene torch

3. In preparation of acetic acid

4. as a starting material for making polyvinylchloride (PVC) which is used in electrical insulation and water proofing.

TESTS TO DISTINGUISHED BETWEEN ALKANES, ALKENES AND ALKYNES.

The following test can be performed to distinguished clearly the different classes of hydrocarbons, that is, the alkanes, alkenes and alkynes.

All alkanes are saturated compounds while both alkenes and alkynes are unsaturated.

TEST 1: 

To the suspected hydrocarbons, add an acidified solution of KMnO4 or K2Cr­2O7 solution. Alkanes have no effect in any of these solutions while both alkenes and alkynes decolorized. Acidified KMnO4 solution changes from purple to colourless, while K2Cr2O7 changes from orange to green.

TEST 2 Add the solution of Ammonical copper (I) chloride to the suspected hydrocarbons. it will form a yellowish or reddish –brown precipitate with terminal alkynes (alkynes with the triple bond in front of or behind the first C- atom). Alkanes and alkenes show no reaction.

2NH4OH(aq)+ 2CuCl + C2H2→ CuC+ 2NH4Cl + 2H2O

TEST: To the suspected hydrocarbon, add solution of Ammonical silver tronitrate (v). Alkanes and alkenes have no effect, but alkynes form a yellowish precipitate.  

2NH4OH + 2AgNO3 + C2H2 → 2AgC + 2NH4NO3 + 2H2O

OBJECTIVE QUESTION

1.When alkynes are hydrogenated completely, they produce compounds with the general molecular formula 

a. CnHn

b. CnH2n+2

c. CnH2n

d.CnH2n-2

2. 

3

4

5

6